q Breathers in finite lattices: nonlinearity and weak disorder.

نویسنده

  • M V Ivanchenko
چکیده

Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors that could be diminished, but never excluded. We generalize the concept of q breathers-periodic orbits in nonlinear lattices, exponentially localized in the linear mode space-to the case of weak disorder, taking the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The instability threshold depends sensitively on a particular realization of disorder and can be modified by specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of material nonlinearity on the band gap for TE and TM modes in square and triangular lattices

In this article, by using the method of finite difference time domain (FDTD) and PML boundary conditions, we have studied the photonic band gaps for TE and TM modes in square and triangular lattices consisting of air holes in dielectric medium and compared the results. In addition, the effect of nonlinearity of the photonic crystal background on the photonic band gaps and comparison with the re...

متن کامل

Weak Coupling Limit and Localized Oscillations in Euclidean Invariant Hamiltonian Systems

We prove the existence of time-periodic and spatially localized oscillations (discrete breathers) in a class of planar Euclidean-invariant Hamiltonian systems consisting of a finite number of interacting particles. This result is obtained in an “anticontinuous” limit, where atomic masses split into two groups that have different orders of magnitude (the mass ratio tending to infinity) and sever...

متن کامل

Lower and upper estimates on the excitation threshold for breathers in DNLS lattices

We propose analytical lower and upper estimates on the excitation threshold for breathers (in the form of spatially localized and time periodic solutions) in DNLS lattices with power nonlinearity. The estimation depending explicitly on the lattice parameters, is derived by a combination of a comparison argument on appropriate lower bounds depending on the frequency of each solution with a simpl...

متن کامل

Dynamics of dark breathers in lattices with saturable nonlinearity.

The problems of the existence, stability, and transversal motion of the discrete dark localized modes in the lattices with saturable nonlinearity are investigated analytically and numerically. The stability analysis shows existence of regions of the parametric space with eigenvalue spectrum branches with non-zeroth real part, which indicates possibility for the propagation of stable on-site and...

متن کامل

Nonlinear localized modes in two-dimensional electrical lattices.

We report the observation of spontaneous localization of energy in two spatial dimensions in the context of nonlinear electrical lattices. Both stationary and moving self-localized modes were generated experimentally and theoretically in a family of two-dimensional square as well as honeycomb lattices composed of 6 × 6 elements. Specifically, we find regions in driver voltage and frequency wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 102 17  شماره 

صفحات  -

تاریخ انتشار 2009